• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Intelligent topic selection for low-cost information retrieval evaluation: A New perspective on deep vs. shallow judging

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2018
    Author
    Kutlu M.
    Elsayed T.
    Lease M.
    Metadata
    Show full item record
    Abstract
    While test collections provide the cornerstone for Cranfield-based evaluation of information retrieval (IR) systems, it has become practically infeasible to rely on traditional pooling techniques to construct test collections at the scale of today's massive document collections (e.g., ClueWeb12's 700M+ Webpages). This has motivated a flurry of studies proposing more cost-effective yet reliable IR evaluation methods. In this paper, we propose a new intelligent topic selection method which reduces the number of search topics (and thereby costly human relevance judgments) needed for reliable IR evaluation. To rigorously assess our method, we integrate previously disparate lines of research on intelligent topic selection and deep vs. shallow judging (i.e., whether it is more cost-effective to collect many relevance judgments for a few topics or a few judgments for many topics). While prior work on intelligent topic selection has never been evaluated against shallow judging baselines, prior work on deep vs. shallow judging has largely argued for shallowed judging, but assuming random topic selection. We argue that for evaluating any topic selection method, ultimately one must ask whether it is actually useful to select topics, or should one simply perform shallow judging over many topics) In seeking a rigorous answer to this over-arching question, we conduct a comprehensive investigation over a set of relevant factors never previously studied together: 1) method of topic selection; 2) the effect of topic familiarity on human judging speed; and 3) how different topic generation processes (requiring varying human effort) impact (i) budget utilization and (ii) the resultant quality of judgments. Experiments on NIST TREC Robust 2003 and Robust 2004 test collections show that not only can we reliably evaluate IR systems with fewer topics, but also that: 1) when topics are intelligently selected, deep judging is often more cost-effective than shallow judging in evaluation reliability; and 2) topic familiarity and topic generation costs greatly impact the evaluation cost vs. reliability trade-off. Our findings challenge conventional wisdom in showing that deep judging is often preferable to shallow judging when topics are selected intelligently.
    DOI/handle
    http://dx.doi.org/10.1016/j.ipm.2017.09.002
    http://hdl.handle.net/10576/13892
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video