• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Influence of draw solution type and properties on the performance of forward osmosis process: Energy consumption and sustainable water reuse

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019
    Author
    Gulied M.
    Al Momani F.
    Khraisheh M.
    Bhosale R.
    AlNouss A.
    Metadata
    Show full item record
    Abstract
    Single and multi-component fertilizers were used as a draw solution (DS) in forward osmosis (FO) to produce high-quality water from synthetic and seawater solution, eliminating the need for DS regeneration and reducing the operational energy. The effect of DS type, concentration, circulation flow rates on the FO water flux (WF), specific water flux (SWF), percentage water recovery (%Wrecovery), reverse salt flux (RSF) and percentage salt rejection (%R) were studied. The results showed that single fertilizer draw solution (SFDSs) produced higher WF (4.43 L/m2.h), %Wrecovery (30%) and RSF (60%) in comparison with multi-component draw solution (MCDS) with WF, %Wrecovery and RSF of 2.57 L/m2.h, 17% and 46%, respectively. DS with higher concentration produced the highest SWF and %Wrecovery and consumed less energy. MCDS with concentration of 200 g/L showed SWF in the range of 14.0 to 10.4 L/m2h and energy consumption of 0.312 kW/h m3 in comparison with 10 to 7.8 L/m2h and 0.23 kW/h m3 for MCDS with concentration of 100 g/L. Increasing the recirculation flow rate showed minimum effect on WF and up to 35% energy saving. Pure water extracted using liquid fertilizers utilizing the unique FO mass transport properties balanced nutrient requirement and the water quality parameters, thereby sustaining the aquaponics industry. - 2019 Elsevier Ltd
    DOI/handle
    http://dx.doi.org/10.1016/j.chemosphere.2019.05.241
    http://hdl.handle.net/10576/13924
    Collections
    • Chemical Engineering [‎1194‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video