• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Cold-start cybersecurity ontology population using information extraction with LSTM

    Thumbnail
    Date
    2019
    Author
    Gasmi H.
    Laval J.
    Bouras A.
    Metadata
    Show full item record
    Abstract
    In this paper, we discuss how Long Short Time Memory (LSTM) neural networks can be applied to cyber security knowledge base population. Assuming we have an empty ontology that models the field of vulnerabilities description management using ontology concepts such as classes and properties, we want to populate it from online unstructured textual resources. More precisely, the task involves predicting instances of the classes in the ontology and the semantic relationship between them from a text describing a vulnerability in a software. As opposed to the statistical inference approach, we adopt a neural networks approach to predict the structure of the text. Given an input as a sequence of words, the model predicts the most likely classification of the words and extracts the relationship between the words that are relevant to the domain. The proposed system is decomposed into named entry recognition, relation extraction, ontology population. In this paper, we show how these tasks fit together and how they are implemented as unified framework. - 2019 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/CSET.2019.8904905
    http://hdl.handle.net/10576/13955
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video