• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Polymethyl methacrylate–ovalbumin @ graphene oxide drug carrier system for high anti-proliferative cancer drug delivery

    Thumbnail
    Date
    2019
    Author
    Prabakaran S.
    Jeyaraj M.
    Nagaraj A.
    Sadasivuni K.K.
    Rajan M.
    Metadata
    Show full item record
    Abstract
    High permeable drug delivery mechanism is indispensable for the treatment of various diseases including cancer. Protein-polymeric carriers have enhanced the permeability and therapeutic of bioactive compounds. Here, polymethyl methacrylate (PMMA) as polymer and egg white protein of ovalbumin (OVA) from a natural source of quail egg was developed for the highly permeable biocompatible drug delivery system. A significant anti-cancer drug doxorubicin (DOX) was loaded on this drug delivery system. Graphene oxide (GO)-functionalized OVA–PMMA drug delivery system has increased the surface for an accumulation of drug. The drug-loading capacity and controlled release of the drug were investigated through the dialysis technique with various physiological pH environments. The effect of DOX and GO on the morphology of OVA–PMMA matrix was studied with the help of FT-IR and XRD patterns. Dynamic light scattering study gives the data about the particle size of this OVA–PMMA–GO and OVA–PMMA–GO–DOX. These data matched with the image obtained from SEM and TEM instruments. Cytotoxicity effect and cellular uptaking of DOX-loaded OVA–PMMA and OVA–PMMA–GO were investigated on gastric cancer cell line and normal cell line. All these characterizations of this study reveal that the drug is successfully loaded on this new drug carrier and controlled release was achieved.
    DOI/handle
    http://dx.doi.org/10.1007/s13204-019-00950-5
    http://hdl.handle.net/10576/13962
    Collections
    • Center for Advanced Materials Research [‎1482‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video