• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Microstructure and compressive behavior of Al-Y2O3 nanocomposites prepared by microwave-assisted mechanical alloying

    Thumbnail
    View/Open
    Microstructure and compressive behavior of Al–Y2O3 nanocomposites prepared by microwave-assisted mechanical alloying.pdf (3.449Mb)
    Date
    2019
    Author
    Mattli M.R.
    Shakoor A.
    Matli P.R.
    Mohamed A.M.A.
    Metadata
    Show full item record
    Abstract
    In this study, Al–Y2O3 nanocomposites were synthesized via mechanical alloying and microwave-assisted sintering. The effect of different levels of yttrium oxide on the microstructural and mechanical properties of the Al–Y2O3 nanocomposites were investigated. The density of the Al–Y2O3 nanocomposites increased with increasing Y2O3 volume fraction in the aluminum matrix, while the porosity decreased. Scanning electron microscopy analysis of the nanocomposites showed the homogeneous distribution of the Y2O3 nanoparticles in the aluminum matrix. X-ray diffraction analysis revealed the presence of yttria particles in the Al matrix. The mechanical properties of the Al–Y2O3 nanocomposites increased as the addition of yttria reached to 1.5 vol. % and thereafter decreased. The microhardness first increased from 38 Hv to 81 Hv, and then decreased to 74 ± 4 Hv for 1.5 vol. % yttria. The Al–1.5 vol. % Y2O3 nanocomposite exhibited the best ultimate compressive strength and yielded a strength of 359 ± 7 and 111 ± 5 MPa, respectively. The Al–Y2O3 nanocomposites showed higher hardness, yield strength, and compressive strength than the microwave-assisted mechanically alloyed pure Al.
    DOI/handle
    http://dx.doi.org/10.3390/met9040414
    http://hdl.handle.net/10576/14041
    Collections
    • Center for Advanced Materials Research [‎1610‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video