• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    EDGE AI for Heterogeneous and Massive IoT Networks

    Thumbnail
    Date
    2019
    Author
    Chen S.
    Gong P.
    Wang B.
    Anpalagan A.
    Guizani M.
    Yang C.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    By combining multiple sensing and wireless access technologies, the Internet of Things (IoT) shall exhibit features with large-scale, massive, and heterogeneous sensors and data. To integrate diverse radio access technologies, we present the architecture of heterogeneous IoT system for smart industrial parks and build an IoT experimental platform. Various sensors are installed on the IoT devices deployed on the experimental platform. To efficiently process the raw sensor data and realize edge artificial intelligence (AI), we describe four statistical features of the raw sensor data that can be effectively extracted and processed at the network edge in real time. The statistical features are calculated and fed into a back-propagation neural network (BPNN) for sensor data classification. By comparing to the k-nearest neighbor classification algorithm, we examine the BPNN-based classification method with a great amount of raw data gathered from various sensors. We evaluate the system performance according to the classification accuracy of BPNN and the performance indicators of the cloud server, which shows that the proposed approach can effectively enable the edge-AI-based heterogeneous IoT system to process the sensor data at the network edge in real time while reducing the demand for computing and network resources of the cloud. - 2019 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ICCT46805.2019.8947193
    http://hdl.handle.net/10576/14163
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video