• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Biomedical Research Center
  • Biomedical Research Center Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Biomedical Research Center
  • Biomedical Research Center Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Identification and mapping of brain natriuretic peptide in the normal ventricular myocardium of a desert-dwelling mammalian model, the camel (Camelus dromedarius): Immunohistochemical and ultrastructural study

    Thumbnail
    Date
    2019
    Author
    Osman A.H.K.
    Minamino N.
    Marei H.E.
    Metadata
    Show full item record
    Abstract
    Brain natriuretic peptide (BNP) is mainly produced in the ventricular myocardium, where it is released into the circulation, producing rapid volume decrease by diuresis, natriuresis, and water shift into the extracellular space, and vasodilation. The dromedary camel, a mammalian model of the desert nomads, lives under unfavorable physiological stresses during thirst, starvation, desiccation, and hot climate, thus has a special demand for water homeostasis. The present studies characterized BNP in the ventricular myocardium of healthy camels, immunohistochemically with a specific antibody, and ultrastructurally identified the endocrine property of the cardiomyocytes and Purkinje fibers. The paranuclear, granular, immunoreactive material was not restricted to the cardiomyocytes, as it was also visible in the Purkinje fibers and their associated nerve varicosities. The intensity of immunoreactive BNP showed a transmural gradient from the subepicardium to the myocardium. Intense immunoreactivity was also noted among the perivascular cardiomyocytes. At the electron microscopic level, specific granules were demonstrated in the paranuclear cytosol of cardiomyocytes and Purkinje fibers. The current study provides the first immunohistochemical localization pattern of BNP in the camel myocardium and suggests a relationship between the intense subepicardial BNP-immunoexpression and a possible translocation of the active hormone to the pericardial fluid for further paracrine actions on the heart and its coronaries.
    DOI/handle
    http://dx.doi.org/10.1002/jcp.27126
    http://hdl.handle.net/10576/14283
    Collections
    • Biomedical Research Center Research [‎810‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video