• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Edge-based compression and classification for smart healthcare systems: concept, implementation and evaluation

    No Thumbnail [120x130]
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019
    Author
    Awad Abdellatif A.
    Emam A.
    Chiasserini C.-F.
    Mohamed A.
    Jaoua A.
    Ward R.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Smart healthcare systems require recording, transmitting and processing large volumes of multimodal medical data generated from different types of sensors and medical devices, which is challenging and may turn some of the remote health monitoring applications impractical. Moving computational intelligence to the network edge is a promising approach for providing efficient and convenient ways for continuous-remote monitoring. Implementing efficient edge-based classification and data reduction techniques are of paramount importance to enable smart healthcare systems with efficient real-time and cost-effective remote monitoring. Thus, we present our vision of leveraging edge computing to monitor, process, and make autonomous decisions for smart health applications. In particular, we present and implement an accurate and lightweight classification mechanism that, leveraging some time-domain features extracted from the vital signs, allows for a reliable seizures detection at the network edge with precise classification accuracy and low computational requirement. We then propose and implement a selective data transfer scheme, which opts for the most convenient way for data transmission depending on the detected patient's conditions. In addition to that, we propose a reliable energy-efficient emergency notification system for epileptic seizure detection, based on conceptual learning and fuzzy classification. Our experimental results assess the performance of the proposed system in terms of data reduction, classification accuracy, battery lifetime, and transmission delay. We show the effectiveness of our system and its ability to outperform conventional remote monitoring systems that ignore data processing at the edge by: (i) achieving 98.3% classification accuracy for seizures detection, (ii) extending battery lifetime by 60%, and (iii) decreasing average transmission delay by 90%.
    DOI/handle
    http://dx.doi.org/10.1016/j.eswa.2018.09.019
    http://hdl.handle.net/10576/14413
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video

    NoThumbnail