• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Synthesis and evaluation of copper-supported titanium oxide nanotubes as electrocatalyst for the electrochemical reduction of carbon oxide to organics

    Thumbnail
    View/Open
    catalysts-09-00298.pdf (2.025Mb)
    Date
    2019
    Author
    Hossain S.K.S.
    Saleem J.
    Rahman S.
    Zaidi S.M.J.
    McKay G.
    Cheng C.K.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Carbon dioxide (CO 2 ) is considered as the prime reason for the global warming effect and one of the useful ways to transform it into an array of valuable products is through electrochemical reduction of CO 2 (ERC). This process requires an efficient electrocatalyst with high faradaic efficiency at low overpotential and enhanced reaction rate. Herein, we report an innovative way of reducing CO 2 using copper-metal supported on titanium oxide nanotubes (TNT) electrocatalysts. The TNT support material was synthesized using alkaline hydrothermal process with Degussa (P-25) as a starting material. Copper nanoparticles were anchored on the TNT by homogeneous deposition-precipitation method (HDP) with urea as precipitating agent. The prepared catalysts were tested in a home-made H-cell with 0.5 M NaHCO3 aqueous solution in order to examine their activity for ERC and the optimum copper loading. Continuous gas-phase ERC was carried out in a solid polymer electrolyte (SPE) reactor. The 10% Cu/TNT catalysts were employed in the gas diffusion layer (GDL) on the cathode side with Pt-Ru/C on the anode side. Faradaic efficiencies for the three major products namely methanol, methane, and CO were found to be 4%, 3%, and 10%, respectively at -2.5 V with an overall current density of 120 mA/cm 2 . The addition of TNT significantly increased the catalytic activity of electrocatalyst for ERC. It is mainly attributed to their better stability towards oxidation, increased CO 2 adsorption capacity and stabilization of the reaction intermediate, layered titanates, and larger surface area (400 m 2 /g) as compared with other support materials. Considering the low cost of TNT, it is anticipated that TNT support electrocatalyst for ECR will gain popularity.
    DOI/handle
    http://dx.doi.org/10.3390/catal9030298
    http://hdl.handle.net/10576/14421
    Collections
    • Center for Advanced Materials Research [‎1485‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video