• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Thermodynamic analysis of EMISE-Water as a working pair for absorption refrigeration system

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019
    Author
    Takalkar G.D.
    Bhosale R.R.
    Mali N.A.
    Bhagwat S.S.
    Metadata
    Show full item record
    Abstract
    In this paper, thermodynamic analysis of novel ionic liquid 1 Ethyl-3-methylimidazolium ethyl sulphate (EMISE) as absorbent and water as green refrigerant for absorption refrigeration system (ARS) is performed. Thermodynamics excess properties like excess Gibbs free energy (GE), excess enthalpy (hE) and equilibrium Duhring's plot (P-T-x1) of EMISE-H2O binary mixture are assessed using non-random two liquid (NRTL) activity coefficient model for composition x1 of 0.45-1. The performance of single effect ARS with SHE are mathematically modeled and simulated by applying first and second laws (exergy analysis) of thermodynamics. Simulated results of ARS are compared with other widely used working fluids and revealed higher COP of 0.66 for EMISE-H2O in comparison to NH3-H2O but lower than LiBr-H2O. In addition, the deviation in the COP and ECOP with the generator temperatures are compared for the evaporation temperature of 5, 10, 15 C. Result showed noticeable difference between the optimum generator temperature based on COP and ECOP. This indicates the exergy analysis is used for evaluation of ARS and selection of heat source supply temperature obtained from waste heat and renewable solar energy.
    DOI/handle
    http://dx.doi.org/10.1016/j.applthermaleng.2018.11.092
    http://hdl.handle.net/10576/14449
    Collections
    • Chemical Engineering [‎1196‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video