• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nonlinear free and forced vibrations of graphene nanoplatelet reinforced microbeams with geometrical imperfection

    Thumbnail
    Date
    2019
    Author
    Mirjavadi S.S.
    Afshari B.M.
    Barati M.R.
    Hamouda A.M.S.
    Metadata
    Show full item record
    Abstract
    Nonlinear free/forced vibration of a functionally graded graphene nanoplatelet (GNP) reinforced microbeam having geometrical imperfection which is rested on a non-linear elastic substrate have been studied in the present research. Graphene Platelets have been uniformly and non-uniformly scattered in the cross section area of the microbeam. Non-uniform distribution of GNPs is considered to be linear or non-linear type. Geometric imperfection is considered similar to the first vibration mode of microbeam. Size effects due to micro-rotations are captured in this study by means of modified couple stress elasticity. In the case of forced vibration, a uniform harmonic load is exerted to the top surface of microbeam. Harmonic balance method has been implemented to solve the non-linear governing equation of microbeam having quadratic and cubic nonlinearities. In this regard, frequency-amplitude curves are obtained and their trends are studied by changing of GNP amount and distribution, geometric imperfection, forced amplitude and hardening foundation. - 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
    DOI/handle
    http://dx.doi.org/10.1007/s00542-018-4277-4
    http://hdl.handle.net/10576/14553
    Collections
    • Mechanical & Industrial Engineering [‎1504‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video