• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Microstructure, wear and corrosion characteristics of Cu matrix reinforced SiC–graphite hybrid composites

    Thumbnail
    Date
    2019
    Author
    Jamwal A.
    Prakash P.
    Kumar D.
    Singh N.
    Sadasivuni K.K.
    Harshit K.
    Gupta S.
    Gupta P.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The aim of the present study is to investigate the effect of SiC-graphite reinforcement on the properties of pure copper. Copper matrix composites with SiC-graphite reinforcement (0, 2.5,5, 7.5 and 10 wt.%) were prepared by stir casting process. Microstructure, phase, density, hardness and wear rate of prepared samples have been investigated. X-ray diffraction revealed that there is no intermediate phase formation between the reinforcement and matrix as a result of interfacial bonding between them. Microstructure study shows the uniform distribution of SiC-graphite particles in the Cu-matrix. Mechanical and corrosion properties of these Cu matrix MMCs were found to be dependent on the reinforcement content. Hardness was found to decrease with the addition of graphite due to its soft nature. Composite containing 5 wt.% reinforcement has shown minimum wear rate and maximum corrosion resistance. It is expected that the present composite will be useful for thermal management applications especially in heat exchangers. - The Author(s) 2019.
    DOI/handle
    http://dx.doi.org/10.1177/0021998319832961
    http://hdl.handle.net/10576/14563
    Collections
    • Center for Advanced Materials Research [‎1482‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video