• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Translating advances in organ-on-a-chip technology for supporting organs

    Thumbnail
    Date
    2019
    Author
    Ashammakhi N.
    Elkhammas E.
    Hasan A.
    Metadata
    Show full item record
    Abstract
    Organ‐on‐a‐chip platforms have recently seen tremendous progress. They have found potential applications in the study of physiology and pathology of tissues, drug toxicity, and development of tissue models for replacement of animal studies. However, their potential role in organ transplantation has hardly been discussed, so far. Organ transplantation represents a major medical advancement of the twenty‐first century, yet it suffers from limitation due to the shortage of organ supply. Very often, organs harvested from donor's body are deemed non‐usable because of being damaged or “marginal”. Recently, developments of bioartificial devices such as artificial placenta and renal assist‐devices have shown that it is possible to develop novel bioartificial organ support systems that can support the healing of damaged or marginal organs prior to their transplantation. In the current article, we introduce a novel concept for building bioartificial organ assist devices and systems by integrating arrays of numerous organ‐on‐a‐chip platforms. The new system can be used in organ repair centers as means for temporary organ support and functional enhancement. We have also briefly reviewed the relevant organ‐on‐a‐chip platforms developed so far, and related literature to form a basis for developing our new concept, device and its application. The proposed system may help to increase the number of organs available for transplantation and improve transplantation outcomes. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2006–2018, 2019.
    DOI/handle
    http://dx.doi.org/10.1002/jbm.b.34292
    http://hdl.handle.net/10576/14566
    Collections
    • Biomedical Research Center Research [‎800‎ items ]
    • Mechanical & Industrial Engineering [‎1472‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video