• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Graphene Oxide Loaded Hydrogel for Enhanced Wound Healing in Diabetic Patients

    Thumbnail
    Date
    2019
    Author
    Ur Rehman S.R.
    Augustine R.
    Zahid A.A.
    Ahmed R.
    Hasan A.
    Metadata
    Show full item record
    Abstract
    Chronic wound or slow healing of a wound is one of the serious complications in diabetic patients. The decrease in the proliferation and migration of cells such as keratinocytes and fibroblasts is the major reason for the development of such chronic wounds in a diabetic patient. Therefore, designing a wound dressing patch using a biodegradable hydrogel, which can provide a sustained release/delivery of active agents that can support cell proliferation and cell migration, will be highly beneficial for promoting diabetic wound healing. Multiple evidences from both in-vitro and in-vivo studies have shown that graphene oxide (GO) and reduced graphene oxide promote wound healing by promoting migration and proliferation of keratinocyte cells. In addition, GO possesses angiogenic property. Gelatin methacrylate (GelMA) based hydrogels display excellent hydrophilic properties due to the presence of hydrophilic amino, amido, carboxyl, and hydroxyl groups in the polymer chains, which gives them highly porous, soft and flexible structure. In this work, we report the development of hydrogel dressing incorporated with GO to improve wound healing by increasing the proliferation and migration of cells. - 2019 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/EMBC.2019.8857341
    http://hdl.handle.net/10576/14599
    Collections
    • Biomedical Research Center Research [‎800‎ items ]
    • Mechanical & Industrial Engineering [‎1472‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video