• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction-based delay optimization data collection algorithm for underwater acoustic sensor networks

    Thumbnail
    Date
    2019
    Author
    Han, Guangjie
    Shen, Songjie
    Wang, Hao
    Jiang, Jinfang
    Guizani, Mohsen
    Metadata
    Show full item record
    Abstract
    The past years have seen a rapid development of autonomous underwater vehicle-aided (AUV-aided) data-gathering schemes in underwater acoustic sensor networks (UASNs). The use of AUVs efficiently reduces energy consumption of sensor nodes. However, all AUV-aided solutions face severe problems in data collection delay, especially in a large-scale network. In this paper, to reduce data collection delay, we propose a prediction-based delay optimization data collection algorithm (PDO-DC). On the contrary to the traditional delay optimization algorithms, Kernel Ridge Regression (KRR) is utilized via cluster member nodes to obtain the corresponding prediction models. Then, the AUV can obtain all cluster data by traversing less cluster head nodes, which can effectively reduce the collection delay of the AUV. The experimental results demonstrate that the proposed method is both feasible and effective. - 2019 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/TVT.2019.2914586
    http://hdl.handle.net/10576/14829
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video