• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Collapse dynamics for the discrete nonlinear Schrödinger equation with gain and loss

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019
    Author
    Fotopoulos, G.
    Karachalios, N.I.
    Koukouloyannis, V.
    Vetas, K.
    Metadata
    Show full item record
    Abstract
    We discuss the finite-time collapse, also referred as blow-up, of the solutions of a discrete nonlinear Schrödinger (DNLS) equation incorporating linear and nonlinear gain and loss. Such an extended DNLS system appears in many inherently discrete physical contexts as a more realistic generalization of the Hamiltonian DNLS lattice. By using energy arguments in finite and infinite dimensional phase spaces (as guided by the boundary conditions imposed), we prove analytical upper and lower bounds for the collapse time, valid for both the defocusing and focusing cases of the model. In addition, the existence of a critical value in the linear loss parameter is underlined, separating finite time-collapse from energy decay. The numerical simulations, performed for a wide class of initial data, not only verified the validity of our bounds, but also revealed that the analytical bounds can be useful in identifying two distinct types of collapse dynamics, namely, extended or localized. Pending on the discreteness/amplitude regime, the system exhibits either type of collapse and the actual blow-up times approach, and in many cases are in excellent agreement with the upper or the lower bound respectively. When these times lie between the analytical bounds, they are associated with a nontrivial mixing of the above major types of collapse dynamics, due to the corroboration of defocusing/focusing effects and energy gain/loss, in the presence of discreteness and nonlinearity.
    DOI/handle
    http://dx.doi.org/10.1016/j.cnsns.2018.12.016
    http://hdl.handle.net/10576/14837
    Collections
    • Mathematics, Statistics & Physics [‎805‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video