• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Highly active and stable bi-functional NiCoO2 catalyst for oxygen reduction and oxygen evolution reactions in alkaline medium

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019
    Author
    Ashok, Anchu
    Kumar, Anand
    Ponraj, Janarthanan
    Mansour, Said A.
    Tarlochan, Faris
    Metadata
    Show full item record
    Abstract
    Single step solution combustion technique was used to synthesize NiO, Co3O4 and NiCoO2 mixed metal oxide with good crystallinity and uniform properties. XRD spectrum indicates the existence of cubic NiCoO2 phase without any impurities. SEM results indicate the presence of porous structures in all the three cases, a typical characteristic of combustion synthesized samples, which is due to the evolution of gases during the synthesis process. TEM along with the phase mapping shows the presence of well dispersed elements Ni, Co and O throughout the sample. All the three catalysts were evaluated for their bifunctionality towards oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline medium. NiCoO2 shows the highest number of electron transfer in the overall reaction mechanism with the maximum kinetic current density of 12.3 mA/cm2. The kinetics of NiCoO2 towards ORR and OER was analyzed using Tafel plot and compared with the mono-metal oxides. The catalytic stability was evaluated for 24 h using continuous chronoamperometric (CA) runs, where NiCoO2 shows exceptionally stable performance without any significant decay in current. The highest activity of NiCoO2 could be due to the presence of higher oxidation states of Ni and Co and because of the existence of the oxygen defects acting as active sites for the oxygen adsorption/desorption during the electrocatalytic reactions. Based on the activity and stability trends, NiCoO2 is found to be a promising bifunctional oxygen electrocatalyst for long-term applications. - 2019 Hydrogen Energy Publications LLC
    DOI/handle
    http://dx.doi.org/10.1016/j.ijhydene.2019.04.165
    http://hdl.handle.net/10576/14844
    Collections
    • Chemical Engineering [‎1268‎ items ]
    • Mechanical & Industrial Engineering [‎1504‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video