• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Moving Object Detection in Complex Scene Using Spatiotemporal Structured-Sparse RPCA

    Thumbnail
    Date
    2019
    Author
    Javed, Sajid
    Mahmood, Arif
    Al-Maadeed, Somaya
    Bouwmans, Thierry
    Jung, Soon Ki
    Metadata
    Show full item record
    Abstract
    Moving object detection is a fundamental step in various computer vision applications. Robust principal component analysis (RPCA)-based methods have often been employed for this task. However, the performance of these methods deteriorates in the presence of dynamic background scenes, camera jitter, camouflaged moving objects, and/or variations in illumination. It is because of an underlying assumption that the elements in the sparse component are mutually independent, and thus the spatiotemporal structure of the moving objects is lost. To address this issue, we propose a spatiotemporal structured sparse RPCA algorithm for moving objects detection, where we impose spatial and temporal regularization on the sparse component in the form of graph Laplacians. Each Laplacian corresponds to a multi-feature graph constructed over superpixels in the input matrix. We enforce the sparse component to act as eigenvectors of the spatial and temporal graph Laplacians while minimizing the RPCA objective function. These constraints incorporate a spatiotemporal subspace structure within the sparse component. Thus, we obtain a novel objective function for separating moving objects in the presence of complex backgrounds. The proposed objective function is solved using a linearized alternating direction method of multipliers based batch optimization. Moreover, we also propose an online optimization algorithm for real-time applications. We evaluated both the batch and online solutions using six publicly available data sets that included most of the aforementioned challenges. Our experiments demonstrated the superior performance of the proposed algorithms compared with the current state-of-the-art methods.
    DOI/handle
    http://dx.doi.org/10.1109/TIP.2018.2874289
    http://hdl.handle.net/10576/14895
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video