• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fuzzy data to crisp estimates: Helping the neurosurgeon making better treatment choices for stroke patients

    Thumbnail
    Date
    2019
    Author
    Qidwai, Uvais
    Metadata
    Show full item record
    Abstract
    Ischemic stroke of brain manifests itself in the form of loss of blood flow at certain parts of the brain rendering them deprived of oxygen, resulting in a chemical imbalance and death of brain cells in that region. The volume depicted by these cells represents the Infarction volume. This volume defines some of the very sensitive treatment decisions that the neurosurgeon has to make; (a) perform a hemicraniectomy and (b) Prognosis of this surgery's outcome Current clinical practice does not provide the surgeons with the answers to the above questions. In this paper, a strategy has been presented that utilizes the Infarction Growth Rate (IGR) as the key element in defining the infarction volume reaching critical levels such that a surgery is inevitable within 48 hours. As a current practice, the stroke lesion growth is most frequently assumed linear, or logarithmic. In this paper, a Machine Learning perspective is presented for mapping the infarction volume using several critical clinical parameters into a possible volumetric prediction in time. The same approach is then used for predicting whether the surgery will be needed soon or not, as well as what might be the likelihood of patient's health in a post-surgery state. In this paper, a machine learning platform is presented which is based on the Adaptive Neuro-Fuzzy Inference System [ANFIS], and has been re-structured such that it can predict IGR and IV with reasonable accuracy, over wide time range. ANFIS hypothesize relationships within the data, and newer learning is able to produce complex characterizations of those relationships. The study was conducted on real stroke-registry database from the local hospital and has shown over 90% accurate prediction.
    DOI/handle
    http://dx.doi.org/10.1109/IECBES.2018.8626611
    http://hdl.handle.net/10576/14908
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video