• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dual-polarized spatial-temporal propagation measurement and modeling in uma o2i scenario at 3.5 GHz

    Thumbnail
    View/Open
    08723388.pdf (1.823Mb)
    Date
    2019
    Author
    Zhang, Ruonan
    Xu, Haochen
    Du, Xiaojiang
    Zhou, Deyun
    Guizani, Mohsen
    Metadata
    Show full item record
    Abstract
    Outdoor-to-indoor (O2I) coverage in urban areas by using the sub-6 GHz (sub-6G) band is important in the fifth generation (5G) mobile communication system. The spatial-temporal propagation characteristics in different polarizations in the 5G spectrum are crucial for the network coverage. In this paper, we measured the urban macrocell (UMa) O2I channels at 3.5 GHz in the space, time, and polarization domains simultaneously. The channel sounder utilized two ±45° polarized antenna arrays. The transmitter (TX) was placed on the rooftop of a five-storey building to emulate a base station and the receiver (RX) was moved in the corridors on different floors in another building to emulate user equipments (UEs). We obtained the small-scale parameters of excess delay, power, and azimuth/elevation of arrival (AoA/EoA) of individual multipath components (MPCs), the propagation profiles of azimuth/elevation power spectrum (APS/EPS) and power delay profile (PDP), and the large-scale parameters including azimuth/elevation spread of arrival (ASA/ESA) and delay spread (DS). Based on the measurement results, we propose the lifted-superposed Laplace distribution (LS-Laplace) function and lifted-superposed normal distribution (LS-Normal) function to model the APS and EPS, respectively, and a three-phase model for the PDP. We find that the ASA and ESA follow the lognormal distribution and the DS has a Rayleigh distribution. We also reveal the impact of surrounding environments and polarization on the channel propagation profiles and statistical characteristics. The measurement results and channel models in this paper provide reference for the design and deployment of the 5G system to exploit the spatial and polarization diversities in the UMa O2I scenario.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2019.2919377
    http://hdl.handle.net/10576/15140
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video