• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    New clinical approaches and emerging evidence on immune-checkpoint inhibitors as anti-cancer therapeutics: CTLA-4 and PD-1 pathways and beyond

    Thumbnail
    Date
    2019
    Author
    Christodoulou, Maria-Ioanna
    Zaravinos, Apostolos
    Metadata
    Show full item record
    Abstract
    The development of immune checkpoint blockers, primarily comprising the anti-PD-1/anti-PD-L1 and anti-CTLA-4 monoclonal antibodies, has formed the therapeutic landscape of quite a few different cancer types. In spite of the great clinical results produced by some inhibitors in some cases, most cancer patients still present de novo or adaptive resistance, and thus, the overall efficacy of this type of immunotherapy is not sufficient. Here, we explore emerging immune checkpoint molecules apart from anti-PD-1/anti-PD-L1 and anti-CTLA-4, presently being used in the clinical setting as mono-or combinatorial therapy against various cancer types. Methods Primary publications with results between January 2014 and December 2019 were investigated on PubMed. ClinicalTrials.gov was screened for finding phase I/II/III cancer trials on the use of new immune checkpoint targets, including LAG-3, TIM-3, TIGIT, and VISTA, which are active (recruiting or not) or completed. Results We recapitulate the clinical data associated with these immune checkpoint inhibitors and analyze their application prospects. The investigation about such emerging molecules has produced encouraging outcomes in preclinical studies and/or clinical trials. Conclusions Although monotherapy treatment has yielded impressive results in some cases, the current attempts emphasize more the design of combinatorial immune checkpoint inhibition that targets non-redundant pathways to achieve a synergistic effect against cancer cells. It seems that such new combinatorial checkpoint inhibition schemes will achieve better outcomes for the patients than the ones witnessed with CTLA-4 or PD-1/PD-L1 blockers.
    DOI/handle
    http://dx.doi.org/10.1615/CritRevImmunol.2020033340
    http://hdl.handle.net/10576/15279
    Collections
    • Medicine Research [‎1794‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video