• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Structure and Rheological Properties of Bovine Aortic Heart Valve and Pericardium Tissue: Implications in Bioprosthetic and Tissue-Engineered Heart Valves

    Thumbnail
    View/Open
    Structure and Rheological Properties of Bovine Aortic Heart Valve and Pericardium Tissue.pdf (2.383Mb)
    Date
    2019
    Author
    Alhadrami, Hani A.
    Syed, Raza ur Rehman
    Zahid, Alap Ali
    Ahmed, Rashid
    Hasan, Shajia
    Hasan, Anwarul
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Heart valve (HV) diseases are among the leading causes of cardiac failure and deaths. Of the various HV diseases, damaged HV leaflets are among the primary culprits. In many cases, impaired HV restoration is not always possible, and the replacement of valves becomes necessary. Bioprosthetic HVs have been used for the replacement of the diseased valves, which is obtained from the sources of bovine and porcine origin, while tissue-engineered heart valves (TEHV) have emerged as a promising future solution. The bioprosthetic valves are prone to become calcified, and thus they last for only ten to fifteen years. The adequate understanding of the correlations between the biomechanics and rheological properties of native HV tissues can enable us to improve the durability of the bioprosthetic HV as well as help in the development of tissue-engineered heart valves (TEHV). In this study, the structural and rheological properties of native bovine aortic HV and pericardium tissues were investigated. The microstructures of the tissues were investigated using scanning electron microscopy, while the rheological properties were studied using oscillatory shear measurement and creep test. The reported results provide significant insights into the correlations between the microstructure and viscoelastic properties of the bovine aortic HV and pericardium tissues.
    DOI/handle
    http://dx.doi.org/10.1155/2019/3290370
    http://hdl.handle.net/10576/15337
    Collections
    • Mechanical & Industrial Engineering [‎1510‎ items ]
    • Medicine Research [‎1912‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video