• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Application of Li-, Mg-, Ba-, Sr-, Ca-, and Sn-doped ceria for solar-driven thermochemical conversion of carbon dioxide

    Thumbnail
    View/Open
    s10853-020-04875-1.pdf (1.988Mb)
    Date
    2020-09-01
    Author
    Takalkar, Gorakshnath
    Bhosale, Rahul R.
    Rashid, Suliman
    AlMomani, Fares
    Shakoor, Rana Abdul
    Al Ashraf, Abdullah
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The redox reactivity of the Li-, Mg-, Ca-, Sr-, Ba-, and Sn-doped ceria (Ce0.9A0.1O2−δ) toward thermochemical CO2 splitting is investigated. Proposed Ce0.9A0.1O2−δ materials are prepared via co-precipitation of the hydroxide technique. The composition, morphology, and the average particle size of the Ce0.9A0.1O2−δ materials are determined by using suitable characterization methods. By utilizing a thermogravimetric analyzer setup, the long-term redox performance of each Ce0.9A0.1O2−δ material is estimated. The results obtained indicate that all the Ce0.9A0.1O2−δ materials are able to produce steady amounts of O2 and CO from cycle 4 to cycle 10. Based on the average nO2 released and nCO produced, the Ce0.899Sn0.102O2.002 and Ce0.895Ca0.099O1.889 are observed to be the top and bottom-most choices. When compared with the CeO2 material, all Ce0.9A0.1O2−δ materials showed elevated levels of O2 release and CO production.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85086409635&origin=inward
    DOI/handle
    http://dx.doi.org/10.1007/s10853-020-04875-1
    http://hdl.handle.net/10576/15524
    Collections
    • Chemical Engineering [‎1196‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video