• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Predictive Auto-scaling of Multi-tier Applications Using Performance Varying Cloud Resources

    Thumbnail
    Date
    2019
    Author
    Iqbal, Waheed
    Erradi, Abdelkarim
    Abdullah, Muhammad
    Mahmood, Arif
    Metadata
    Show full item record
    Abstract
    The performance of the same type of cloud resources, such as virtual machines (VMs), varies over time mainly due to hardware heterogeneity, resource contention among co-located VMs, and virtualization overhead. The performance variation can be significant, introducing challenges to learn workload-specific resource provisioning policies to automatically scale the cloud-hosted applications to maintain the desired response time. Moreover, auto-scaling multi-tier applications using minimal resources is even more challenging because bottlenecks may occur on multiple tiers concurrently. In this paper, we address the problem of using performance varying VMs for gracefully auto-scaling a multi-tier application using minimal resources to handle dynamically increasing workloads and satisfy the response time requirements. The proposed system uses a supervised learning method to identify the appropriate resources provisioning for multi-tier applications based on the prediction of the application response time and the request arrival rate. The supervised learning method learns a state transition configuration map which encodes a resource allocation states invariant to the underlying VMs performance variations. This configuration map helps to use performance varying resources in predictive autoscaling method. Our experimental evaluation using a real-world multi-tier web application hosted on a public cloud shows an improved application performance with minimal resources compared to conventional predictive auto-scaling methods. IEEE
    DOI/handle
    http://dx.doi.org/10.1109/TCC.2019.2944364
    http://hdl.handle.net/10576/15580
    Collections
    • Computer Science & Engineering [‎2485‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video