• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Lightweight and Privacy-Preserving Medical Services Access for Healthcare Cloud

    Thumbnail
    Date
    2019
    Author
    Liu, Jingwei
    Tang, Huifang
    Sun, Rong
    Du, Xiaojiang
    Guizani, Mohsen
    Metadata
    Show full item record
    Abstract
    With the popularity of cloud computing technology, the healthcare cloud system is becoming increasingly perfect, which reduces the time of disease diagnosis and brings great convenience to people's lives. But meanwhile, the healthcare cloud system usually involves users' privacy information, and there is still a challenge on how to ensure that the sensitive information of users is not disclosed. Attribute-based signature (ABS) is a very useful technique for the privacy protection of users and is very suitable for anonymous authentication and privacy access control. However, general ABS schemes usually contain heavy computation overhead in signing and verification phases, which is not conducive for resource-limited devices to access healthcare cloud system. To address the above issues, we propose a lightweight and privacy-preserving medical services access scheme based on multi-authority ABS for healthcare cloud, named LPP-MSA. By using online/offline signing and server-aided verification mechanisms, the proposed scheme can greatly reduce the calculation overhead. In addition, LPP-MSA achieves unforgeability and anonymity and can resist collision attack. The comparisons of computational cost and storage overhead between LPP-MSA and the other existing schemes show that LPP-MSA is more efficient in both signing and verification phases. Therefore, it could be well applied to the scenarios where users access the healthcare cloud system for large scale remote medical services via resource-constrained mobile devices. - 2013 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2019.2931917
    http://hdl.handle.net/10576/15586
    Collections
    • Computer Science & Engineering [‎2429‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video