• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Identifying opinion mining elements based on dependency relations and fuzzy logic

    Thumbnail
    Date
    2019
    Author
    Bouras, Abdelaziz
    Zhang, Haiqing
    Sekhari, Aicha
    Ouzrout, Yacine
    Metadata
    Show full item record
    Abstract
    Opinion mining mainly involves three elements: feature and feature-of relations, opinion expressions and the related opinion attributes (e.g. Polarity), and feature-opinion relations. Although many works are emerged to achieve the aim of gaining information, the previous researches typically handle each of the three elements in isolation that cannot give the sufficient information extraction results and hence increases the complexity and the running time of information extraction. In this paper, we propose an opinion mining extraction algorithm to jointly discover the main opinion mining elements. Specifically, the algorithm automatically builds kernels to combine closest words into new terms from word level to phrase level based on dependency relations, and we ensure the accuracy of opinion expressions and polarity based on fuzzy measurements, opinion degree intensifiers, and opinion patterns. The analyzed reviews show that the proposed algorithm can effectively identify the main elements simultaneously and outperform the baseline methods. - 2019 ICAI 2015 - WORLDCOMP 2015. All rights reserved.
    DOI/handle
    http://hdl.handle.net/10576/15602
    Collections
    • Computer Science & Engineering [‎2429‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video