• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Survey on Mobile Crowd-Sensing and Its Applications in the IoT Era

    Thumbnail
    Date
    2019
    Author
    AbualSaud, Khalid
    Elfouly, Tarek M.
    Khattab, Tamer
    Yaacoub, Elias
    Ismail, Loay Sabry
    Ahmed, Mohamed Hossam
    Guizani, Mohsen
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Mobile crowd-sensing (MCS) is a new sensing paradigm that takes advantage of the extensive use of mobile phones that collect data efficiently and enable several significant applications. MCS paves the way to explore new monitoring applications in different fields such as social networks, lifestyle, healthcare, green applications, and intelligent transportation systems. Hence, MCS applications make use of sensing and wireless communication capabilities provided by billions of smart mobile devices, e.g., Android and iOS-based mobile devices. The aim of this paper is to identify and explore the new paradigm of MCS that is using smartphone for capturing and sharing the sensed data between many nodes. We discuss the main components of the infrastructure required to support the proposed framework. The existing and potential applications leveraging MCS are laid out. Furthermore, this paper discusses the current challenges facing the collection methodologies of the participants' data in task management. The recent issues in the MCS findings are reviewed as well as the opportunities and challenges in sensing methods are analyzed. Finally, open research issues and future challenges facing MCS are highlighted. - 2013 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2018.2885918
    http://hdl.handle.net/10576/15637
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video