• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    POKs based secure and energy-efficient access control for implantable medical devices

    Thumbnail
    Date
    2019
    Author
    Fu, Chenglong
    Du, Xiaojiang
    Wu, Longfei
    Zeng, Qiang
    Mohamed, Amr
    Guizani, Mohsen
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Implantable medical devices (IMDs), such as pacemakers, implanted cardiac defibrillators and neurostimulators are medical devices implanted into patients' bodies for monitoring physiological signals and performing medical treatments. Many IMDs have built-in wireless communication modules to facilitate data collecting and device reprogramming by external programmers. The wireless communication brings significant conveniences for advanced applications such as real-time and remote monitoring but also introduces the risk of unauthorized wireless access. The absence of effective access control mechanisms exposes patients' life to cyber attacks. In this paper, we present a lightweight and universally applicable access control system for IMDs. By leveraging Physically Obfuscated Keys (POKs) as the hardware root of trust, provable security is achieved based on standard cryptographic primitives while attaining high energy efficiency. In addition, barrier-free IMD access under emergent situations is realized by utilizing the patient's biometrical information. We evaluate our proposed scheme through extensive security analysis and a prototype implementation, which demonstrate our work's superiority on security and energy efficiency. - ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019.
    DOI/handle
    http://dx.doi.org/10.1007/978-3-030-37228-6_6
    http://hdl.handle.net/10576/15653
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video