• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Poly(lactic-co-glycolic acid) Nanoparticles Loaded with Callistemon citrinus Phenolics Exhibited Anticancer Properties against Three Breast Cancer Cell Lines

    Thumbnail
    Date
    2019
    Author
    Ahmed, Rashid
    Tariq, Muhammad
    Ahmad, Irfan S.
    Fouly, Hanafy
    Fakhar-I-Abbas
    Hasan, Anwarul
    Kushad, Mosbah
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Fruit and vegetable diets rich in phenolic compounds reduce the risk of various cancers and offer multiple other health benefits due to their bioactivity and powerful antioxidant properties. However, the human health benefits of most phenolic compounds are restricted due to their limited aqueous solubility, low absorption, restricted passive cellular efflux, and poor gastrointestinal stability. Nanotechnology has been used to deliver various therapeutic drugs to specific targets overcoming many of the limitations of direct treatments. This study was designed to develop poly(lactic-co-glycolic acid) (PLGA) nanoencapsulated phenolic-rich extracts from Callistemon citrinus and berberine and to evaluate their effectiveness against extremely invasive MDA-MB 231, moderately invasive MCF-10A, and minimally invasive MCF-7 breast cancers. We have achieved about 80% encapsulation of phenolics from C. citrinus. Most encapsulated nanoparticles were polygonal with particles sizes of 200 to 250 nm. Release of phenolics from encapsulation during storage was biphasic during the first week and then levelled off thereafter. Nanoencapsulated phenolics from C. citrinus extract, berberine, and combination of both enhanced their bioactivity against the three breast cancer cell lines by nearly 2-fold. Growth inhibition of cells was a linear curve relative to phenolic concentration, with a maximum inhibition of nearly 100% at 0.1 mg/ml compared to control. Copyright - 2019 Rashid Ahmed et al. This is an open access article distributed under the Creative Commons Attribution License
    DOI/handle
    http://dx.doi.org/10.1155/2019/2638481
    http://hdl.handle.net/10576/15684
    Collections
    • Biomedical Research Center Research [‎785‎ items ]
    • Mechanical & Industrial Engineering [‎1460‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video