• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimizing cloud-service performance: Efficient resource provisioning via optimal workload allocation

    Thumbnail
    Date
    2017
    Author
    Wang, Zhuoyao
    Hayat, Majeed M.
    Ghani, Nasir
    Shaban, Khaled B.
    Metadata
    Show full item record
    Abstract
    Cloud computing is being widely accepted and utilized in the business world. From the perspective of businesses utilizing the cloud, it is critical to meet their customers' requirements by achieving service-level-objectives. Hence, the ability to accurately characterize and optimize cloud-service performance is of great importance. In this paper a stochastic multi-tenant framework is proposed to model the service of customer requests in a cloud infrastructure composed of heterogeneous virtual machines. Two cloudservice performance metrics are mathematically characterized, namely the percentile and the mean of the stochastic response time of a customer request, in closed form. Based upon the proposed multi-tenant framework, a workload allocation algorithm, termed maxmincloud algorithm, is then devised to optimize the performance of the cloud service. A rigorous optimality proof of the max-min-cloud algorithm is also given. Furthermore, the resource-provisioning problem in the cloud is also studied in light of the max-min-cloud algorithm. In particular, an efficient resource-provisioning strategy is proposed for serving dynamically arriving customer requests. These findings can be used by businesses to build a better understanding of how much virtual resource in the cloud they may need to meet customers' expectations subject to cost constraints.
    DOI/handle
    http://dx.doi.org/10.1109/TPDS.2016.2628370
    http://hdl.handle.net/10576/15955
    Collections
    • Computer Science & Engineering [‎2482‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video