• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Hybrid Feature Selection Method for Complex Diseases SNPs

    Thumbnail
    Date
    2017
    Author
    Alzubi, Raid
    Ramzan, Naeem
    Alzoubi, Hadeel
    Amira, Abbes
    Metadata
    Show full item record
    Abstract
    Machine learning techniques have the potential to revolutionize medical diagnosis. Single Nucleotide Polymorphisms (SNPs) are one of the most important sources of human genome variability; thus, they have been implicated in several human diseases. To separate the affected samples from the normal ones, various techniques have been applied on SNPs. Achieving high classification accuracy in such a high-dimensional space is crucial for successful diagnosis and treatment. In this work, we propose an accurate hybrid feature selection method for detecting the most informative SNPs and selecting an optimal SNP subset. The proposed method is based on the fusion of a filter and a wrapper method, i.e., the Conditional Mutual Information Maximization (CMIM) method and the support vector machine-recursive feature elimination, respectively. The performance of the proposed method was evaluated against four state-of-The-Art feature selection methods, minimum redundancy maximum relevancy, fast correlation-based feature selection, CMIM, and ReliefF, using four classifiers, support vector machine, naive Bayes, linear discriminant analysis, and k nearest neighbors on five different SNP data sets obtained from the National Center for Biotechnology Information gene expression omnibus genomics data repository. The experimental results demonstrate the efficiency of the adopted feature selection approach outperforming all of the compared feature selection algorithms and achieving up to 96% classification accuracy for the used data set. In general, from these results we conclude that SNPs of the whole genome can be efficiently employed to distinguish affected individuals with complex diseases from the healthy ones. 1 2013 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2017.2778268
    http://hdl.handle.net/10576/16020
    Collections
    • Computer Science & Engineering [‎2485‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video