• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A comparative study on long term stability of self-healing epoxy coating with different inorganic nanotubes as healing agent reservoirs

    Thumbnail
    View/Open
    EPL-0008244_article.pdf (724.3Kb)
    Date
    2017
    Author
    Vijayan, P. P.
    El-Gawady, Y. Mohamed Hany
    Al-Maadeed, M. Ali S.A.
    Metadata
    Show full item record
    Abstract
    Self-healing epoxy coatings were prepared with different nanotubes as reservoirs for epoxy monomer (healing agent). The nanotubes selected for the current study were TiO2 nanotubes with two different tube diameter (TNT1 and TNT2) and naturally occurring hallyosite nanotubes (HNT). These self-healing coatings were subjected to accelerated weathering exposure. The weathering stability of the coatings were observed. The surface morphology, chemical changes and surface roughness were studied as a function of weathering exposure period. These studies confirmed that the long term stability of the coatings highly depend on the nanotube parameters such as nature, surface area and diameter. It was found that the photocatalytic degradation of epoxy matrix with TiO2 nanotubes was prominent in TNT1 filled coating compared with their TNT2 variant. The higher possibility of exposure of epoxy monomer encapsulated inside both HNT and TNT2 facilitated the cure reaction with UV light to create new chains during weathering. 1 BME-PT.
    DOI/handle
    http://dx.doi.org/10.3144/expresspolymlett.2017.83
    http://hdl.handle.net/10576/16144
    Collections
    • Center for Advanced Materials Research [‎1482‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video