• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nonlinear thermal buckling of axially functionally graded micro and nanobeams

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2017
    Author
    Shafiei, Navvab
    Mirjavadi, Seyed Sajad
    Afshari, Behzad Mohasel
    Rabby, Samira
    Hamoudab, A.M.S.
    Metadata
    Show full item record
    Abstract
    In this study, the nonlinear thermal buckling of axially functionally graded (AFG) Euler-Bernoulli micro/nanobeams is analyzed. The Eringen's nonlocal elasticity theory is used to develop the governing equations of nanobeam and the modified couple stress theory is used to study the microbeam. The micro- and nanobeams are made of pure metal, pure ceramic and axially functionally graded material which is the composition of metal and ceramic. Boundary conditions are considered as clamped (CC) and simply supported (SS). The generalized differential quadrature method (GDQM) is used along with the iteration technique to solve the nonlinear equations. The parametric studies are served to examine the effects of the small scale parameters, length to height ratio (L/h), nonlinear amplitude and AFG power index on the buckling temperature of the micro- and nanobeams.
    DOI/handle
    http://dx.doi.org/10.1016/j.compstruct.2017.02.048
    http://hdl.handle.net/10576/16194
    Collections
    • Mechanical & Industrial Engineering [‎1484‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video