• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Study of device instability of bottom-gate ZnO transistors with sol-gel derived channel layers

    Thumbnail
    Date
    2017
    Author
    Yapabandara, Kosala
    Mirkhani, Vahid
    Sultan, Muhammad Shehzad
    Ozden, Burcu
    Khanal, Min P.
    Parka, Minseo
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In this paper, the authors report the device instability of solution based ZnO thin film transistors by studying the time-evolution of electrical characteristics during electrical stressing and subsequent relaxation. A systematic comparison between ambient and vacuum conditions was carried out to investigate the effect of adsorption of oxygen and water molecules, which leads to the creation of defects in the channel layer. The observed subthreshold swing and change in field effect mobility under gate bias stressing have supported the fact that oxygen and moisture directly affect the threshold voltage shift. The authors have presented the comprehensive analysis of device relaxation under both ambient and vacuum conditions to further confirm the defect creation and charge trapping/detrapping process since it has not been reported before. It was hypothesized that chemisorbed molecules form acceptorlike traps and can diffuse into the ZnO thin film through the void on the grain boundary, being relocated even near the semiconductor/dielectric interface. The stretched exponential and power law model fitting reinforce the conclusion of defect creation by oxygen and moisture adsorption on the active layer
    DOI/handle
    http://dx.doi.org/10.1116/1.4979321
    http://hdl.handle.net/10576/16355
    Collections
    • Center for Advanced Materials Research [‎1518‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video