• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Individual Query Cardinality Estimation using Multiple Query Combinations on a Search Engine's Corpus

    Thumbnail
    Date
    2017
    Author
    Islam, Fahad
    Hassaine, Abdelaali
    Jaoua, Ali
    Das, Gautam
    Zhang, Nan
    Metadata
    Show full item record
    Abstract
    Most modern search engines feature keyword based search interfaces. These interfaces are usually found on websites belonging to enterprises or governments or sites related to news articles, blogs and social media that contain a large corpus of documents. These collections of documents are not easily indexed by web search engines, and are considered as hidden web databases. These databases provide opportunities for data analysis for many third-parties through their keyword search interfaces. A significant amount of research has already been carried out on analyzing and extracting aggregate information about these hidden document corpora. But most of these research focus on the high level big-picture information of the database. Not enough focus has been done on extracting analytical information which is specific to individual queries. This paper focuses on that analysis gap and takes ideas from other existing research to formulate a query cardinality estimation technique i.e. The count of documents matching a query in the document corpus of a search engine. We experimentally assess the effectiveness of our method by building a search engine on the Reuters-21578 document corpus. For a given keyword the corresponding documents' count is estimated only by sending search queries using the interface. 1 2017 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/COMAPP.2017.8079753
    http://hdl.handle.net/10576/16414
    Collections
    • Computer Science & Engineering [‎2485‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video