• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An automated approach to translate a biological process from ODEs into graphical hybrid functional Petri Nets

    Thumbnail
    Date
    2017
    Author
    Mecheter, Imene
    Hadjidj, Rachid
    Foufou, Sebti
    Metadata
    Show full item record
    Abstract
    The study of biological systems is growing rapidly, and can be considered as an intrinsic task in biological research, and a prerequisite for diagnosing diseases and drug development. The integration of biological studies with computer technologies led to noticeable developments in biology with the appearance of many powerful modeling and simulation techniques and tools. The help of computers in biology resulted in deeper knowledge about complex biological systems and biopathways behaviors. Among modeling tools, the Petri Net formalism plays an important role. Petri Net is a powerful computerized and graphical modeling technique originally developed by Carl Adam Petri in 1960 to model discrete event systems. With its various extensions, Petri Nets find applications in many other fields including Biology. The extension known under the name Hybrid Functional Petri Net (HFPN) was developed specifically to model biological systems. Traditionally, biological processes are captured as systems of ordinary differential equations (ODEs). However, HFPNs offer a much more elegant and versatile approach to represent these processes more accurately. In fact, HFPNs allow to capture phenomena which are impossible to capture with ODES, while being more intuitive and easy to understand and model with. In this work we propose an approach to translate a system of ODEs representing a biological process into a HFPN. The resulting HFPN, not only preserves the semantics of the original model, but is also more humanly readable thanks to the use of a novel technique to connect its components in a smart way. To validate our approach, we implemented it as an extension to the tool Real Time Studio (an integrated environment for modeling, simulation and automatic verification of real-time systems), and compared our simulation results with those obtained by simulating systems of ODEs using MATLAB. 1 2017 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/CIBCB.2017.8058558
    http://hdl.handle.net/10576/16428
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video