• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Thermal comfort investigation of an outdoor air-conditioned area in a hot and arid environment

    Thumbnail
    View/Open
    10_14_2020_Thermal co.pdf (1.061Mb)
    Date
    2017
    Author
    Ghani, Saud
    Bialy, Esmail M.
    Bakochristou, Foteini
    Gamaledin, Seifelislam Mahmoud Ahmad
    Rashwan, Mohammed Mohammed
    Hughes, Ben
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Thermal comfort in hot and arid outdoor environments is an industrial challenging field. An outdoor air-conditioned area was designed and built to host sport and social events during summers 2014 and 2015 in Qatar. This article presents a thermal comfort analysis of the outdoor air-conditioned area using computational fluid dynamics, on-site spectators surveys, and on-spot climatic measurements. The study utilized computational fluid dynamics to develop a thermal comfort model of the outdoor air-conditioned area to predict the thermal comfort of the occupants. Five different thermal comfort indices; mean comfort vote, cooling power index, wet-bulb globe temperature index, Humidex, discomfort index, were utilized to assess the thermal comfort of spectators within the conditioned space. The indices utilized different on site measurements of meteorological data and on-site interviews. In comparison to the mean comfort vote of the sampled survey, all thermal comfort indices underestimated the actual thermal comfort percentage except the wet-bulb globe temperature index that overestimated the comfort percentage. The computational fluid dynamics results reasonably predicted most of the thermal comfort indices values. The computational fluid dynamics results overestimated the comfort percentage of mean comfort vote, wet-bulb globe temperature index, and discomfort index, while the thermal comfort percentage was underestimated as indicated by the cooling power index, and Humidex. 1 2017 The Author(s). Published with license by Taylor and Francis 1 2017, 1 Saud Ghani, Esmail M. Bialy, Foteini Bakochristou, Seifelislam Mahmoud Ahmad Gamaledin, Mohammed Mohammed Rashwan, and Ben Hughes.
    DOI/handle
    http://dx.doi.org/10.1080/23744731.2016.1267490
    http://hdl.handle.net/10576/16430
    Collections
    • Mechanical & Industrial Engineering [‎1510‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video