• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fabrication of polysulfone nanocomposite membranes with silver-doped carbon nanotubes and their antifouling performance

    Thumbnail
    Date
    2017
    Author
    Khalid, Arsalan
    Ibrahim, Ahmed
    Al?Hamouz, Othman Charles S.
    Laoui, Tahar
    Benamor, Abdelbaki
    Atieh, Mautaz Ali
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In this study, polysulfone (PSf)/silver-doped carbon nanotube (Ag-CNT) nanocomposite membranes were prepared by a phase-inversion technique; they were characterized and evaluated for fouling-resistant applications with bovine serum albumin (BSA) solutions. Carbon nanotubes were doped with silver nanoparticles via a wet-impregnation technique. The prepared Ag-CNT nanotubes were characterized with scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy, X-ray diffraction, Raman spectroscopy, and thermogravimetric analysis. The fabricated flat-sheet PSf/Ag-CNT nanocomposite membranes with different Ag-CNT loadings were examined for their surface morphology, roughness, hydrophilicity, and mechanical strength with SEM, atomic force microscopy, contact angle measurement, and tensile testing, respectively. The prepared composite membranes displayed a greater rejection of BSA solution (?90%) and water flux stability during membrane compaction with a 10% reduction in water flux values (up to 0.4% Ag-CNTs) than the pristine PSf membrane. The PSf nanocomposite membrane with a 0.2% Ag-CNT loading possessed the highest flux recovery of about 80% and the lowest total membrane resistance of 56% with a reduced irreversible fouling resistance of 21%.
    DOI/handle
    http://dx.doi.org/10.1002/app.44688
    http://hdl.handle.net/10576/16458
    Collections
    • GPC Research [‎502‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video