• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    On the detection of Kernel-level rootkits using hardware performance counters

    Thumbnail
    Date
    2017
    Author
    Singh, Baljit
    Evtyushkin, Dmitry
    Elwell, Jesse
    Riley, Ryan D
    Cervesato, Iliano
    Metadata
    Show full item record
    Abstract
    Recent work has investigated the use of hardware perfor- mance counters (HPCs) for the detection of malware run- ning on a system. These works gather traces of HPCs for a variety of applications (both malicious and non-malicious) and then apply machine learning to train a detector to dis- tinguish between benign applications and malware. In this work, we provide a more comprehensive analysis of the ap- plicability of using machine learning and HPCs for a specific subset of malware: kernel rootkits. We design five synthetic rootkits, each providing a single piece of rootkit functionality, and execute each while collect- ing HPC traces of its impact on a specific benchmark ap- plication. We then apply machine learning feature selection techniques in order to determine the most relevant HPCs for the detection of these rootkits. We identify 16 HPCs that are useful for the detection of hooking based roots, and also find that rootkits employing direct kernel object manipula- tion (DKOM) do not significantly impact HPCs. We then use these synthetic rootkit traces to train a detection system capable of detecting new rootkits it has not seen previously with an accuracy of over 99%. Our results indicate that HPCs have the potential to be an effective tool for rootkit detection, even against new rootkits not previously seen by the detector.
    DOI/handle
    http://dx.doi.org/10.1145/3052973.3052999
    http://hdl.handle.net/10576/16473
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video