• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Forum Proceedings
  • Qatar University Annual Research Forum & Exhibition
  • QUARFE 2020
  • Theme 2: Population, Health & Wellness
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Forum Proceedings
  • Qatar University Annual Research Forum & Exhibition
  • QUARFE 2020
  • Theme 2: Population, Health & Wellness
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Induction of Glyoxalase 1 to prevent Methylglyoxal-Induced Insulin Resistance in Cardiomyocytes

    Thumbnail
    View/Open
    Induction of Glyoxalase 1 as a Strategy to Prevent Methylglyoxal-Induced Insulin Resistance in Rat Cardiomyocytes Implications for Diabetic Cardiomyopathy.pdf (644.0Kb)
    Date
    2020
    Author
    Aldali, Sara Haitham
    Sankaralingam, Sownd
    Metadata
    Show full item record
    Abstract
    Background: Type 2 Diabetes mellitus is characterized by hyperglycemia and insulin resistance. Methylglyoxal (MG) a highly reactive dicarbonyl compound is also increased in diabetes. MG is detoxified by glyoxalase 1 (Glo-1) enzyme using reduced glutathione (GSH) as a co-factor. MG has been shown to have deleterious effects on cardiovascular cells and impairs insulin signaling. Insulin resistance is associated with diabetic cardiomyopathy. Trans-Resveratrol (tRES) and Hesperetin (HES) combination has been shown to increase Glo-1 and improve insulin signaling in obese patients. Aim(s): The aim of this study is to investigate whether tRES-HES combination prevents MG-induced cardiac insulin resistance and the underlying mechanisms in cardiomyocytes in culture. Methodology: (H9C2) rat cardiomyocytes were treated with MG (100 µM) for 24 hours in the presence or absence of tRES-HES (10 µM). Glo-1 activity was determined by the formation of S-D lactoylglutathione; protein expression of P-Akt and P-GSK3b was determined using Western blot. In some experiments, cells were stimulated with insulin (100 nM) for 10 minutes to test insulin sensitivity. Results: MG reduced Glo-1 activity by ~25%, blunted insulin-induced phosphorylation of Akt and Gsk3b and increased the expression of beta-myosin heavy chain by ~50% (a marker of cardiac dysfunction) significantly (P˂0.05) compared to untreated control group of cells. Co-administration of tRES-HES combination restored Glo1 activity, maintained insulin-induced phosphorylation of Akt and GSK3b and prevented the increase in beta myosin heavy chain significantly (P<0.05). Conclusions: Induction of Glo1 prevents MG-induced cardiac insulin resistance and the increase in marker of cardiac dysfunction. This strategy could be helpful in preventing cardiovascular complications associated with diabetes
    URI
    https://doi.org/10.29117/quarfe.2020.0230
    DOI/handle
    http://hdl.handle.net/10576/16813
    Collections
    • Theme 2: Population, Health & Wellness [‎118‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video