• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Biomedical Research Center
  • Biomedical Research Center Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Biomedical Research Center
  • Biomedical Research Center Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Metabolomics of lean/overweight insulin resistant females reveals alterations in steroids and fatty acids.

    View/Open
    Metabolomics of non-obese_JCEM_published manuscript.pdf (1.102Mb)
    Date
    2020-10-01
    Author
    Diboun, Ilhame
    Al-Mansoori, Layla
    Al-Jaber, Hend
    Albagha, Omar
    Elrayess, Mohamed A
    Metadata
    Show full item record
    Abstract
    The global diabetes epidemic is largely attributed to obesity-triggered metabolic syndrome. However, the impact of insulin resistance (IR) prior to obesity on the high prevalence of diabetes and the molecular mediators remain largely unknown. This study aims to compare the metabolic profiling of apparently healthy lean/overweight participants with IR and insulin sensitivity (IS), and identify the metabolic pathways underlying IR. In this cross-sectional study, clinical and metabolic data for 200 seemingly healthy young females (100 IR and 100 IS) was collected from Qatar Biobank. Orthogonal partial least square analysis was performed to assess the extent of separation between individuals from the two groups based on measured metabolites. Classical linear models were used to identify the metabolic signature of IR, followed by elastic-net-regularized generalized linear model (GLMNET) and Receiver Operating Characteristic (ROC) analysis to determine top metabolites associated with IR. Compared to lean/overweight participants with IS, those with IR showed increased androgenic steroids, including androsterone glucuronide, in addition to various microbiota byproducts, such as the phenylalanine-derivative carboxyethylphenylalanine. On the other hand, participant with IS had elevated levels of long chain fatty acids. A ROC analysis suggested a better discriminatory performance using 20 metabolites selected by GLMNET in comparison to the classical clinical traits (area under curve: 0.93 vs 0.73, respectively). Our data confirm the multifactorial mechanism of IR with diverse spectrum of emerging potential biomarkers, including steroids, long chain fatty acids and microbiota metabolites. Further studies are warranted to validate these markers for diagnostic and therapeutic applications.
    DOI/handle
    http://dx.doi.org/10.1210/clinem/dgaa732
    http://hdl.handle.net/10576/16827
    Collections
    • Biomedical Research Center Research [‎808‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video