• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    ILK silencing inhibits migration and invasion of more invasive glioblastoma cells by downregulating ROCK1 and Fascin-1.

    View/Open
    Main article (1.894Mb)
    Date
    2020-08-01
    Author
    Louca, Maria
    Zaravinos, Apostolos
    Stylianopoulos, Triantafyllos
    Gkretsi, Vasiliki
    Metadata
    Show full item record
    Abstract
    Glioblastoma multiforme (GBM) is the most aggressive type of brain tumor and it is associated with poor survival. Integrin-linked kinase (ILK) is a serine/threonine protein pseudo-kinase that binds to the cytoplasmic domains of β1 and β3 integrins and has been previously shown to promote invasion and metastasis in many cancer types, including GBM. However, little is known regarding the exact molecular mechanism implicating ILK in GBM aggressiveness. In this study, we used two brain cell lines, the non-invasive neuroglioma H4 cells, and the highly invasive glioblastoma A172 cells, which express ILK in much higher levels than H4. We studied the effect of ILK silencing on the metastatic behavior of glioblastoma cells in vitro and elucidate the underlying molecular mechanism. We showed that siRNA-mediated silencing of ILK inhibits cell migration and invasion of the highly invasive A172 cells while it does not affect the migratory and invasive capacity of H4 cells. These data were also supported by respective changes in the expression of Rho-associated kinase 1 (ROCK1), fascin actin-bundling protein 1 (FSCN1), and matrix metalloproteinase 13 (MMP13), which are known to regulate cell migration and invasion. Our findings were further corroborated by analyzing the Cancer Genome Atlas Glioblastoma Multiforme (TCGA-GBM) dataset. We conclude that ILK promotes glioblastoma cell invasion through activation of ROCK1 and FSCN1 in vitro, providing a more exact molecular mechanism for its action.
    DOI/handle
    http://dx.doi.org/10.1007/s11010-020-03774-y
    http://hdl.handle.net/10576/16838
    Collections
    • Medicine Research [‎1820‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video