• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Synergistic effect of interfacial phenomenon on enhancing catalytic performance of Pd loaded MnO: X-CeO2-C hetero-nanostructure for hydrogenation and electrochemical reactions

    Thumbnail
    Date
    2017
    Author
    Yousaf, Ammar Bin
    Imran, M.
    Zaidi, Syed Javaid
    Kasak, Peter
    Ansari, Tariq Mahmood
    Manzoor, Suryyia
    Yasmeen, Ghazala
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Hetero-nanostructures have proven to be impressive materials due to their multi-functionalities in various catalytic applications. Here, the basic focus has been devoted to interface chemistry among different domains in the field of catalysis to develop an outstanding composite material with exceptional redox and catalytic properties in hydrogenation and as well in electrochemical reactions. The unique nano-hybrid material is synthesized by the loading of Pd nanoparticles onto MnOx-CeO2 mixed oxides. The heterogeneous catalytic ability for hydrogenation reactions were studied such as the reduction of organic pollutant 4-nitrophenol into 4-aminophenol and the hydrogenation of styrene into ethylbenzene. However, for electrochemical reactions, a comprehensive investigation as anode and cathode materials in direct formic acid fuel cells was performed. The strong reducing property of Pd enhanced the catalytic performance of mixed oxides and the synergistic effect of mixed oxides through interfacial phenomenon improved the performance of the hetero-nanostructured catalyst. The as-designed nanocomposite depicts high catalytic efficiency with low-cost economical standards.
    DOI/handle
    http://dx.doi.org/10.1039/c7ta02122d
    http://hdl.handle.net/10576/16854
    Collections
    • Center for Advanced Materials Research [‎1570‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video