• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Proton conducting blend membranes: physical, morphological and electronic properties

    Thumbnail
    Date
    2017
    Author
    Al-Ahmed, Amir
    Nazal, Mazen Khaled
    Sultan, Abdullah S.
    Adewole , Jimoh K.
    Zaidi, Syed Javaid
    Metadata
    Show full item record
    Abstract
    Blend membranes of sulfonated poly(ether ether ketone) (SPEEK) and sulfonated polyetherimide (SPEI) have been prepared and investigated as a potential polymer electrolyte membrane (PEM) for direct methanol fuel cell (DMFC). Polymers were dissolved in N-methyl-2-pyrrolidone (NMP) in different mixing ratios and membranes were casted using a semi-automatic casting machine on a pre-cleaned glass plate. The influence of SPEI percentage on ion exchange capacity (IEC), water uptake, methanol permeability and proton exchange capacity have been investigated. Blend membranes showed slightly better IEC, water uptake and methanol crossover properties as compare to pure SPEEK; but proton conductivity was slightly lower than that of pure SPEEK membrane. Membrane morphology was investigated by FESEM, TGA and AFM. Overall, a homogeneous surface was observed for most of the blend membranes, with minor phase separation at higher SPEI contents samples. AFM image of the membrane surface shows nanoscale surface roughness.
    DOI/handle
    http://dx.doi.org/10.1007/s00289-016-1756-6
    http://hdl.handle.net/10576/16884
    Collections
    • Center for Advanced Materials Research [‎1482‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video