• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Using geodesic space density gradients for network community detection

    Thumbnail
    Date
    2017
    Author
    Mahmood, Arif
    Small, Michael
    Al-Maadeed, Somaya Ali
    Rajpoot, Nasir
    Metadata
    Show full item record
    Abstract
    Many real world complex systems naturally map to network data structures instead of geometric spaces because the only available information is the presence or absence of a link between two entities in the system. To enable data mining techniques to solve problems in the network domain, the nodes need to be mapped to a geometric space. We propose this mapping by representing each network node with its geodesic distances from all other nodes. The space spanned by the geodesic distance vectors is the geodesic space of that network. The position of different nodes in the geodesic space encode the network structure. In this space, considering a continuous density field induced by each node, density at a specific point is the summation of density fields induced by all nodes. We drift each node in the direction of positive density gradient using an iterative algorithm till each node reaches a local maximum. Due to the network structure captured by this space, the nodes that drift to the same region of space belong to the same communities in the original network. We use the direction of movement and final position of each node as important clues for community membership assignment. The proposed algorithm is compared with more than 10 state-of-the-art community detection techniques on two benchmark networks with known communities using Normalized Mutual Information criterion. The proposed algorithm outperformed these methods by a significant margin. Moreover, the proposed algorithm has also shown excellent performance on many real-world networks.
    DOI/handle
    http://dx.doi.org/10.1109/TKDE.2016.2632716
    http://hdl.handle.net/10576/16909
    Collections
    • Computer Science & Engineering [‎2482‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video