• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Study of ethanol dehydrogenation reaction mechanism for hydrogen production on combustion synthesized cobalt catalyst

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2017
    Author
    Ashok, Anchu
    Kumar, Anand
    Bhosale, Rahul
    Saleh Saad, Mohd Ali
    AlMomani, Fares
    Tarlochan, Faris
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Cobalt nanoparticles synthesized via solution combustion synthesis were used to study the decomposition mechanism of ethanol for hydrogen production. Thermodynamic studies were conducted on the synthesis of cobalt nanoparticles using cobalt nitrate as a metal precursor in presence of different reducing agents; hydrazine, glycine, urea and citric acid. Thermodynamic results along with experimental characterizations show that the type and amount of fuel influence the adiabatic combustion temperature and the gases released during synthesis process affecting nanoparticle size, porosity and microstructure. The synthesized nanoparticles were activated by passing H2 at 300 °C inside the reaction chamber before being used for studying the reaction pathway of catalytic dehydrogenation of ethanol. These studies indicate that cobalt catalyst is selective for aldehyde and acetate species along with the formation of H2, H2O and CO2. Production of methane was also observed on cobalt surface at 400 °C. The spent catalyst nanoparticles were characterized after the reaction using XRD, SEM and TEM to analyze the particle size and its morphology. Results indicate a growth in particle size due to sintering, and carbon formation on the catalyst surface due to coking during ethanol dehydrogenation reaction.
    DOI/handle
    http://dx.doi.org/10.1016/j.ijhydene.2017.01.175
    http://hdl.handle.net/10576/17002
    Collections
    • Chemical Engineering [‎1199‎ items ]
    • Mechanical & Industrial Engineering [‎1465‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video