• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Solar thermochemical ZnO/ZnSO4 water splitting cycle for hydrogen production

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2017
    Author
    Bhosale, Rahul
    Kumar, Anand
    AlMomani, Fares
    Gupta, Ram B.
    Metadata
    Show full item record
    Abstract
    In this paper, solar reactor efficiency analysis of the solar thermochemical two-step zinc oxide-zinc sulfate (ZnO-ZnSO4) water splitting cycle. In step-1, the ZnSO4 is thermally decomposed into ZnO, SO2, and O2 using solar energy input. In step-2, the ZnO is re-oxidized into ZnSO4 via water splitting reaction producing H2. The ZnSO4 is recycled back to the solar reactor and hence can be re-used in multiple cycles. The equilibrium compositions associated with the thermal reduction and water-splitting steps are identified by performing HSC simulations. The effect of Ar towards decreasing the required thermal reduction temperature is also explored. The total solar energy input and the re-radiation losses from the ZnO-ZnSO4 water splitting cycle are estimated. Likewise, the amount of heat energy released by different coolers and water splitting reactor is also determined. Thermodynamic calculations indicate that the cycle (?cycle) and solar-to-fuel energy conversion efficiency (?solar-to-fuel) of the ZnO-ZnSO4 water splitting cycle are equal to 40.6% and 48.9% (without heat recuperation). These efficiency values are higher than previously investigated thermochemical water splitting cycles and can be increased further by employing heat recuperation.
    DOI/handle
    http://dx.doi.org/10.1016/j.ijhydene.2017.02.190
    http://hdl.handle.net/10576/17004
    Collections
    • Chemical Engineering [‎1196‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video