• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fault and performance management in multi-cloud based NFV using shallow and deep predictive structures

    Thumbnail
    Date
    2017
    Author
    Gupta, Lav
    Samaka, M.
    Jain, Raj
    Erbad, Aiman
    Bhamare, Deval
    Chan, H. Anthony
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Deployment of Network Function Virtualization (NFV) over multiple clouds accentuates its advantages like flexibility of virtualization, proximity to customers and lower total cost of operation. However, NFV over multiple clouds has not yet attained the level of performance to be a viable replacement for traditional networks. One of the reasons is the absence of a standard based Fault, Configuration, Accounting, Performance and Security (FCAPS) framework for the virtual network services. In NFV, faults and performance issues can have complex geneses within virtual resources as well as virtual networks and cannot be effectively handled by traditional rule-based systems. To tackle the above problem, we propose a fault detection and localization model based on a combination of shallow and deep learning structures. Relatively simpler detection has been effectively shown to be handled by shallow machine learning structures like Support Vector Machine (SVM). Deeper structure, i.e., the stacked autoencoder has been found to be useful for a more complex localization function where a large amount of information needs to be worked through to get to the root cause of the problem. We provide evaluation results using a dataset adapted from fault datasets available on Kaggle and another based on multivariate kernel density estimation and Markov sampling.
    DOI/handle
    http://dx.doi.org/10.1109/ICCCN.2017.8038530
    http://hdl.handle.net/10576/17005
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video