• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Exploring the compass of potential changes induced by climate warming in plant communities

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2017
    Author
    Ferrarini, Alessandro
    Alatalo, Juha M.
    Gervasoni, David
    Foggi, Bruno
    Metadata
    Show full item record
    Abstract
    New models are required to predict the impacts of future climate change on biodiversity. A move must be made away from individual models of single species toward approaches with synergistically interacting species. The focus should be on indirect effects due to biotic interactions. Here we propose a new parsimonious approach to simulate direct and indirect effects of global warming on plant communities. The methodology consists of five steps: a) field survey of species abundances, b) quantitative assessment of species co-occurrences, c) assignment of a theorised effect of increased temperature on each species, d) creation of a community model to project community dynamics, and e) exploration of the potential range of temperature change effects on plant communities. We explored the possible climate-driven dynamics in an alpine vegetation community and gained insights into the role of biotic interactions as determinants of plant species response to climate change at local scale. The study area was the uppermost portion of Alpe delle Tre Potenze (Northern Apennines, Italy) from 1500 m up to the summit at 1940 m. Our work shows that: 1) unexpected climate-driven dynamics can emerge, 2) interactive communities with indirect effects among species can overcome direct effects induced by global warming; 3) if just one or few species react to global warming the new community configuration could be unexpected and counter-intuitive; 4) timing of species reactions to global warming is an important driver of community dynamics; 5) using simulation models with a limited amount of data in input, it is possible to explore the full range of potential changes in plant communities induced by climate warming.
    DOI/handle
    http://dx.doi.org/10.1016/j.ecocom.2016.11.003
    http://hdl.handle.net/10576/17176
    Collections
    • Biological & Environmental Sciences [‎931‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video