• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A new method for synthesizing test accuracy data outperformed the bivariate method

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0895435620312191-main.pdf (1.867Mb)
    Date
    2020-12-01
    Author
    Furuya-Kanamori, Luis
    Kostoulas, Polychronis
    Doi, Suhail A R
    Metadata
    Show full item record
    Abstract
    This paper outlines the development of a new method (split component synthesis; SCS) for meta-analysis of diagnostic accuracy studies and assesses its performance against the commonly used bivariate random effects model. The SCS method summarises the study-specific natural logarithm of the diagnostic odds ratios (ln(DOR)), which mainly reflects test discrimination rather than threshold effects, and then splits the summary ln(DOR) into its component parts, logit of sensitivity and logit of specificity. Performance of the estimator under the SCS method was assessed through simulation and compared against the bivariate random effects model estimator in terms of bias, mean squared error (MSE), and coverage probability across varying degrees of between-studies heterogeneity. The SCS estimator for the DOR, Se, and Sp were less biased and had smaller MSE than the bivariate model estimators. Despite the wider width of the 95% confidence intervals under the bivariate model, the latter had a poorer coverage probability compared to that under the SCS method. The SCS estimator outperforms the bivariate model estimator and thus represents an improvement in our approach to diagnostic meta-analyses. The SCS method is available to researchers through the diagma module in Stata and the SCSmeta function in R.
    DOI/handle
    http://dx.doi.org/10.1016/j.jclinepi.2020.12.015
    http://hdl.handle.net/10576/17234
    Collections
    • Medicine Research [‎1913‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video